Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Experimental & Molecular Medicine ; : e65-2013.
Article in English | WPRIM | ID: wpr-152459

ABSTRACT

Vascular smooth muscle cells (VSMCs) undergo phenotypic changes in response to vascular injury such as angioplasty. Protein kinase G (PKG) has an important role in the process of VSMC phenotype switching. In this study, we examined whether rosiglitazone, a peroxisome proliferator-activated receptor (PPAR)-gamma agonist, could modulate VSMC phenotype through the PKG pathway to reduce neointimal hyperplasia after angioplasty. In vitro experiments showed that rosiglitazone inhibited the phenotype change of VSMCs from a contractile to a synthetic form. The platelet-derived growth factor (PDGF)-induced reduction of PKG level was reversed by rosiglitazone treatment, resulting in increased PKG activity. This increased activity of PKG resulted in phosphorylation of vasodilator-stimulated phosphoprotein at serine 239, leading to inhibited proliferation of VSMCs. Interestingly, rosiglitazone did not change the level of nitric oxide (NO) or cyclic guanosine monophosphate (cGMP), which are upstream of PKG, suggesting that rosiglitazone influences PKG itself. Chromatin immunoprecipitation assays for the PKG promoter showed that the activation of PKG by rosiglitazone was mediated by the increased binding of Sp1 on the promoter region of PKG. In vivo experiments showed that rosiglitazone significantly inhibited neointimal formation after balloon injury. Immunohistochemistry staining for calponin and thrombospondin showed that this effect of rosiglitazone was mediated by modulating VSMC phenotype. Our findings demonstrate that rosiglitazone is a potent modulator of VSMC phenotype, which is regulated by PKG. This activation of PKG by rosiglitazone results in reduced neointimal hyperplasia after angioplasty. These results provide important mechanistic insight into the cardiovascular-protective effect of PPARgamma.


Subject(s)
Animals , Rats , Aorta/injuries , Calcium-Binding Proteins/genetics , Cell Proliferation , Cyclic GMP/metabolism , Cyclic GMP-Dependent Protein Kinases/genetics , Hyperplasia/metabolism , Microfilament Proteins/genetics , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/drug effects , Nitric Oxide/metabolism , PPAR gamma/agonists , Promoter Regions, Genetic , Rats, Sprague-Dawley , Sp1 Transcription Factor/metabolism , Thiazolidinediones/pharmacology , Thrombospondins/genetics , Tunica Intima/metabolism , Vascular System Injuries/metabolism
2.
An. acad. bras. ciênc ; 83(2): 637-648, June 2011. ilus
Article in English | LILACS | ID: lil-589920

ABSTRACT

Schistosomes are trematode parasites and of worldwide medical importance for humans and animals. Growth and development of these parasites require a specific host environment, but also permanent communication processes between the two genders. Accumulating molecular evidence indicates that the responsible interactions are mediated by signal transduction processes. Conserved signaling molecules were identified, and first approaches made for their characterization. However, no representative of the conserved family of cGMP-dependent protein kinases (cGKs) has been described in this parasite yet. Within the Schistosoma mansoni genome data-set we identified cGK homologs, of which one was investigated in more detail in this study. We present the cloning of SmcGK1, whose sequence shows homology to cGKs of higher eukaryotes. SmcGK1 was found to be gender-independently transcribed in adult schistosomes. The occurrence of SmcGK1 sense and antisense transcripts suggests that the expression of this gene is controlled at the post-transcriptional level. In situ hybridization experiments demonstrated a gonad-preferential expression profile in both genders indicating a role of SmcGK1, at least during sexual development of schistosomes. Using a cGK-specific inhibitor to treat adult schistosomes in vitro finally resulted in a multifaceted phenotype including slow motion, oocyte congestion, and reduced egg production.


Esquistossomos são parasitas trematodos de importância médica em todo o mundo para o homem e os animais. O crescimento e o desenvolvimento destes parasitas requerem um ambiente específico do hospedeiro, mas também um processo de comunicação permanente entre parasitas dos dois sexos. Evidência molecular tem se acumulado e indica que as interações são mediadas por processos de transdução de sinal. Moléculas sinalizadoras conservadas foram identificadas, e as primeiras abordagens têm sido feitas para sua caracterização. Contudo, não foi ainda descrito nenhum representante da família conservada das proteína-quinases dependentes de cGMP (cGKs) neste parasita. Analisando o genoma do Schistosoma mansoni nós identificamos homólogos de cGK, dos quais um foi investigado em mais detalhe no presente estudo. Aqui apresentamos a clonagem do gene SmcGK1, cuja sequência mostra homologia com cGKs de eucariotos superiores. Smc- GK1 foi detectada como sendo transcrita de forma gêneroindependente em esquistossomos adultos. A ocorrência de transcritos de SmcGK1 senso e antisenso sugere que a expressão deste gene é controlada em nível pos-transcricional. Experimentos de hibridização in situ demonstraram uma expressão preferencial nas gônadas em ambos os gêneros, indicando um papel para SmcGK1, pelo menos durante o desenvolvimento de esquistossomos. Usando um inibidor específico de cGK para tratamento de esquistossomos adultos in vitro finalmente resultou em um fenótipo multifacetado, incluindo movimentos lentos, congestão dos oócitos, e redução da produção de ovos.


Subject(s)
Animals , Female , Male , Cyclic GMP-Dependent Protein Kinases/genetics , Gonads/metabolism , Oocytes/metabolism , Schistosoma mansoni/enzymology , Base Sequence , Cloning, Molecular , Cyclic GMP-Dependent Protein Kinases/metabolism , DNA, Complementary/genetics , In Situ Hybridization , Molecular Sequence Data , Schistosoma mansoni/genetics , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL